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ABSTRACT

A bounded linear operator T on a separable complex Banach space X is

called weakly supercyclic if there exists a vector x ∈ X such that the pro-

jective orbit {λT nx : n ∈ N λ ∈ C} is weakly dense in X. Among other

results, it is proved that an operator T such that σp(T ?) = ∅, is weakly

supercyclic if and only if T is positive weakly supercyclic, that is, for every

supercyclic vector x ∈ X, only considering the positive projective orbit:

{rT nx : n ∈ N, r ∈ R+} we obtain a weakly dense subset in X. As a

consequence it is established the existence of non-weakly supercyclic vec-

tors (non-trivial) for positive operators defined on an infinite dimensional

separable complex Banach space. The paper is closed with concluding

remarks and further directions.
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1. Introduction and main results.

A bounded linear operator T , defined on a separable Banach space X is said to

be supercyclic if there exists x ∈ X (later called supercyclic for T ) such that the

orbit {λT nx : λ ∈ C, n ∈ N} is dense in X . On the other hand, an operator T

is called cyclic if there exists a vector x such that the set: span{T nx : n ≥ 1} is

dense in X . For a survey of results related with Supercyclicity, the reader can

see [9] and [13].

Recently, weaker forms of Supercyclicity (nearer to the cyclicity notion) have

appeared in the literature ([6, 8]). For instance, we will say that T is weakly

supercyclic if for some vector x ∈ X , the projective orbit {λT nx : λ ∈ C, n ∈ N}

is weakly dense in X . We will also say that T is positive weakly supercyclic

if for each weakly supercyclic vector x, the subset {λT nx : λ ∈ R+, n ∈ N} is

weakly dense in X . The existence of weakly supercyclic operators which are

not supercyclic (that is, the projective orbit is not dense in the norm topology)

was established in [17].

The interest in the study of different types of operators’ orbits, arises from

the invariant subspace problem which remains open in case of the separable

Hilbert space. For a negative solution to the invariant subspace problem in a

separable Banach space, the reader can see [7] and [16]. For a remarkable result

in the positive direction, the reader can see [12].

The invariant subspace problem remains open even for positive operators

defined in an ordered vector space or even in a Banach lattice. For a good

recent survey on this topic the reader can see [1] and for some recent advances

in this direction see [2, 3].

Our principal result establishes the following

Theorem 2.1: Let M be a semigroup of continuous linear operators acting on

a complex topological vector space X . Let us suppose that there is an operator

T ∈ M satisfying

(1) p(T ) has dense range for all polynomials p such that p(T ) 6= 0, and T

is not a multiply of the identity.

(2) TS = ST for all S ∈ M.

If there exists a vector x ∈ X such that the set

{λSx : |λ| = 1, S ∈ M}
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is dense in X , then, the set

{Sx : S ∈ M}

is dense in X .

Recall that, a continuous linear operator T , defined on a topological vector

space X , is hypercyclic if there exists a vector x ∈ X such that the orbit

{T nx : n ∈ N} is dense in X . Theorem 2.1 will be useful to prove also some

properties of hypercyclic operators defined on a complex topological vector space

X . For instance, as a consequence of Theorem 2.1 we can show that a bounded

operator T , on a separable Banach space X is weakly hypercyclic if and only

if αT is weakly hypercyclic for every α of modulus 1. This result complements

some spectral properties of weakly hypercyclic operators discovered in [15].

We will obtain several consequences from Theorem 2.1. One of the most

remarkable is the following contribution to the invariant subspace problem for

positive operators

Theorem 2.6: Let T be a bounded linear operator defined on a separable

complex Banach space X . Let us suppose that T is positive with respect to a

cone C. Then, there exists a non-trivial, non weakly supercyclic vector for T .

The previous result is a direct consequence of a general result on weakly

Positive Supercyclicity which complements the Positive Supercyclicity Theorem

discovered in [10]. The reader can see in the survey [11] that the Positivity plays

a determinant role in the Supercyclicity setting. Section 3 closes the paper with

some open problems and further directions.

2. Non weakly supercyclic vectors for positive operators.

The proof of the main result is stated for semigroups of continuous linear oper-

ators defined on a complex topological vector space X . We will prove this more

general result and we deduce from it several consequences.

Theorem 2.1: Let M be a semigroup of continuous linear operators acting on

a complex topological vector space X . Let us suppose that there is an operator

T ∈ M satisfying

(1) p(T ) has dense range for all polynomials p such that p(T ) 6= 0 and T is

not a multiply of the identity.
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(2) TS = ST for all S ∈ M.

If there exists a vector x ∈ X such that the set

{λSx : |λ| = 1, S ∈ M}

is dense in X , then, the set

{Sx : S ∈ M}

is dense in X .

Proof. Let us denote by X0 the subset of x ∈ X such that the orbit

{λSx : |λ| = 1, S ∈ M}

is dense in X .

For x, y ∈ X put

,x)ג y) =
{

µ ∈ C : |µ| = 1 , µy ∈ {Sx : S ∈ M}
}

.

Firstly, we will see that the set ,x)ג y) is a closed subset of the unit circle

T = {µ ∈ C : |µ| = 1}. Indeed, if ,x)ג y) = ∅ then the above assertion is

already proved. Let us suppose that ,x)ג y) 6= ∅ and let {µm} ⊂ ,x)ג y) be a

sequence converging to µ ∈ T. Let V, W neighbourhoods of the origin such that

V + V ⊂ W . We claim that Smx ∈ µy + W for some m. Indeed, since µm → µ

there exists m0 such that µmy ∈ µy + V for all m ≥ m0. For each m ≥ m0,

since µm ∈ ,x)ג y) there exists Sm ∈ M such that Smx ∈ µmy + V . Therefore,

if m ≥ m0

Smx ∈ µmy + V ⊂ µy + V + V ⊂ µy + W.

Since W was arbitrary, we obtain that µ ∈ ,x)ג y), which yields the desired

result.

Now, let us prove that if x ∈ X0, then ,x)ג y) 6= ∅ for all y ∈ X . We divide

the circle ∂D into two closed arcs F1 and F2 on length π. Let us denote by

Ci = {λSx : λ ∈ Fi, S ∈ M}, i = 1, 2, then

{λSx : |λ| = 1, S ∈ M} = C1 ∪ C2

and therefore

X = {λSx : |λ| = 1, S ∈ M} = C1 ∪ C2.

Now, since y ∈ X then y ∈ C1 or y ∈ C2. Suppose without loss that y ∈

C1. Again, let us divide F1 as the union of two closed arcs of length π/2,



Vol. 167, 2008 ON WEAK POSITIVE SUPERCYCLICITY 307

F1 = F 2
1 ∪ F 2

2 , then we obtain that

y ∈ {λSx : λ ∈ F 2
1 , S ∈ M}

or

y ∈ {λSx : λ ∈ F 2
2 S ∈ M}.

By induction, we can construct a sequence or closed arcs Fn, such that Fn ⊂

Fn+1, length(Fn) = π/2n−1, and such that

y ∈ {λSx : λ ∈ Fn, S ∈ M}.

By Cantor’s Theorem there exists a unique µ ∈
⋂

∞

n=1 Fn. We claim that

µ−1 ∈ ,x)ג y). Indeed, let V, W two neighbourhoods of the origin such that

V + V ⊂ W . Since the product by scalars is continuous, there exists ε > 0

such that λ−1y ∈ µ−1y + V for all λ such that |λ − µ| ≤ ε. Let us consider the

circumference arc Gµ,ε = {λ ∈ T : |λ − µ| < ε}, and let us observe that

y ∈ {λSx : λ ∈ Gµ,ε, S ∈ S},

this follows because Fn ⊂ Gµ,ε for some n. Therefore, there exists S′ ∈ M and

λ ∈ Gµ,ε such that

λS′x ∈ y + V,

which implies that

S′x ∈ λ−1y + V ⊂ µ−1y + V + V ⊂ µ−1y + W.

Since W was arbitrary, µ−1 ∈ ,x)ג y) therefore, ,x)ג y) 6= ∅.

Now, let us prove the following transitivity property. Let x, y ∈ X0 and z ∈ X

such that µ1 ∈ ,x)ג y) and µ2 ∈ ,y)ג z). Then, let us see that µ1µ2 ∈ ,x)ג z).

Indeed, let us fix V an arbitrary neighbourhood of the origin. Since µ2 ∈

,y)ג z) there exists S1 ∈ M such that

S1y ∈ µ2z + V.

Now, since y ∈ {µ−1
1 Sx : S ∈ M}, using the continuity of S1, there exists S2 ∈

M such that

S1µ
−1
1 S2x ∈ µ2z + V

which implies that S1S2x ∈ µ1µ2z + V . That is, µ1µ2 ∈ ,x)ג z).

As a consequence, ,x)ג x) is a non-empty closed subsemigroup of the unit

circle T.
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If ,x)ג x) = T then by the transitivity property proved above, we have that

,x)ג y) = T for all y ∈ X , therefore the set {Sx : S ∈ M} is dense in X .

In what follows we shall suppose that ,x)ג x) 6= T and we will show that this

assumption leads to a contradiction. Firstly, we will prove the following claim.

Claim: Let us suppose that ,x)ג x) 6= T then:

1) There exists an integer k such that

,x)ג x) = {e
2πij

k : j = 0, 1, . . . , k − 1}.

2) For every y ∈ X0 there exists µy ∈ T such that

,x)ג y) = {µye
2πij

k : j = 0, 1, . . . , k − 1}.

3) The function f defined on the space ∨{x, Tx}\{0} by f(y) = µk where

µ is any element in ,x)ג y) is well defined and continuous.

Proof of the claim. To prove 1), let us consider the number

s = inf{t > 0 : e2πit ∈ ,x)ג x)}.

Let us see that s > 0. Otherwise, if s = 0 then there exists a sequence tn > 0

such that tn → 0 and e2πitn ∈ ,x)ג x). But the last fact implies that ,x)ג x)

is dense in T. Indeed, if for some n, tn is irrational then since ,x)ג x) is a

subsemigroup then ,x)ג x) contains a dense subset. Therefore, we can suppose

that tn is rational for all n, but this fact implies that ,x)ג x) contains the n-roots

of the unity for all n, which is a dense subset in T. Therefore, e2πis ∈ ,x)ג x)

and s > 0 is a rational number, hence 1 ∈ ,x)ג x).

Let k = min{n ∈ N : ns ≥ 1}. If ks > 1, since ,x)ג x) is a semigroup

e2πi(ks−1) ∈ ,x)ג x), but 0 < ks−1 < s which is a contradiction to the definition

of s. Then, ks = 1 and ,x)ג x) ⊃ {e2πij/k : j = 0, 1, . . . , k − 1}.

Let us suppose that µ ∈ ,x)ג x)\{e2πij/k : j = 0, 1, . . . , k−1}. Then µ = e2πit

with t ∈ (0, 1) and there exists j0 ∈ {0, 1, . . . , k − 1} such that j0/k < t <

(j0 + 1)/k. But this implies that e2πi(t−j0/k) ∈ ,x)ג x) with 0 < j0/k − t < s,

but this is a contradiction with the definition of s. Therefore we have proved

1).

Let us prove 2). Since ,x)ג y) and ,y)ג x) are non-empty, let µy ∈ ,x)ג y)

and α ∈ ,y)ג x). Let us observe that µyג(x, x) ⊂ ,x)ג y). On the other hand,

,x)ג y)α = αג(x, y) ⊂ ,x)ג x) (by the transitivity property), therefore ,x)ג x)
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and ,x)ג y) have the same cardinality. Therefore,

,x)ג y) = {µye
2πij/k : j = 0, 1, . . . , k − 1}

which yields the desired equality.

Finally, to prove 3), let us observe that by 2) the function f is well-defined.

Moreover, f is continuous: Suppose on the contrary that there are non-zero

vectors un, u ∈ ∨{x, Tx} \ {0} such that un → u but f(un) 9 f(u) (let us

observe that we consider on ∨{x, Tx} \ {0} some metric topology). We can

suppose, without loss of generality, that the sequence f(un) converges to some

α ∈ T, and α 6= f(u). Let µn ∈ ,x)ג un), passing to a subsequence if it is

necessary, we can suppose that µn converges to some µ ∈ T. We claim that

µ ∈ ,x)ג u).

Let V, W neighbourhoods of the origin satisfying V +V ⊂ W . Since µnun →

µu, there exists n0 such that µnun ∈ µu + V for all n ≥ n0. On the other

hand, since µn ∈ ,x)ג un), for each n ≥ n0 there exists Sn ∈ M such that

Snx ∈ µnun + V which implies that

Snx ∈ µnun + V ⊂ µu + V + V ⊂ µu + W,

for all n ≥ n0, therefore µ ∈ ,x)ג u). Thus, f(u) = µk, but

α = lim
n→∞

f(un) = lim
n→∞

µk
n = µk = f(u),

a contradiction.

The vectors x and Tx are linearly independent. In other case, there exists

α ∈ C such that Tx = αx. Since S ∈ M commutes with T , S(Ker(T − α)) ⊂

Ker(T − α) for all S ∈ M, and therefore {µSx : µ ∈ T, S ∈ M}− = X ⊂

Ker(T − α), which is a contradiction because by hypothesis T cannot be a

multiply of the identity. Therefore, zx + (1 − |z|)Tx ∈ X0 for all z ∈ C, indeed

since D = {λS(x) : |λ| = 1, S ∈ M} is dense and T satisfies 2)

{λS(zx + (1 − |z|)Tx) : |λ| = 1, S ∈ M} = (zI + (1 − |z|)T )(D)

which is dense because zI + (1 − |z|)T has dense range.

Let us denote by D the closed unit disk, and let us define the function

g : D → T by g(z) = f(zx + (1 − |z|)Tx). For all z in the boundary of D,

we have that ,x)ג zx) = z−1ג(x, x). Indeed, let µ ∈ ,x)ג zx), that is, there exists

a subsequence {Sn} ⊂ M such that Snx → µzx as n → ∞ , but this implies

that µz ∈ ,x)ג x) and this proves the assertion.
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Let us observe the function g on T, g(z) = f(zx) = z−kf(x) = z−k.

The function g provides a homotopy between the constant path γ1(t) = 0

and the path γ2(t) = g(eit) = e−kit which has the winding number −k, a

contradiction.

Next, we will obtain some consequences from Theorem 2.1.

Theorem 2.2: Let T be a hypercyclic operator defined on a complex topo-

logical vector space X . Then x ∈ X is hypercyclic for T if and only if x is

hypercyclic for λT for all λ ∈ T.

Proof. Let us consider the semigroup M = {λnT n : n ∈ N}. Since T is hyper-

cyclic, for each hypercyclic vector for T , x ∈ X , we have that

{µλnT nx : n ∈ N, µ ∈ T}

is dense in X . Since the orbit of T is dense (in particular its closure has non-

empty interior), by the results in [18], we have that p(T ) has dense range for

every polynomial p such that p(T ) 6= 0. Hence, the hypothesis of Theorem

2.1 are fulfilled and we obtain that T and λT have the same set of hypercyclic

vectors.

As a consequence we obtain the following corollary which complements the

spectral properties of weakly hypercyclic operators discovered in [15].

Corollary 2.3: Let T be a weakly hypercyclic operator defined on a complex

Banach space X . Then x ∈ X is weakly hypercyclic for T if and only if x is

weakly hypercyclic for λT for all λ ∈ T.

Now, we obtain some consequences for supercyclic operators.

Theorem 2.4: Let X be a complex locally convex vector space, and let T be

a bounded linear operator on X . Let us suppose that σp(T
?) = ∅. Then, the

vector x is supercyclic for T if and only if the set

{rT nx : n ∈ N, r ∈ R+}

is dense in X .

Proof. Since σp(T
?) = ∅ a direct consequence of the Hahn–Banach Theorem

asserts that p(T ) has dense range whenever p(T ) 6= 0. The proof follows directly

applying Theorem 2.1 to the following semigroup: {rT n : n ∈ N, r ∈ R+}.
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In particular, for the weak topology in a Banach space we have

Corollary 2.5: Let T be a weakly supercyclic operator on a complex Banach

space X . Let us suppose that σp(T
?) = ∅. Then, the vector x is weakly

supercyclic for T if and only if the subset

{rT nx : n ∈ N, r ∈ R+}

is weakly dense in X .

And finally, as a consequence

Theorem 2.6: Let X be a complex separable Banach space, and let T be a

bounded linear operator on X . Let C ⊂ X be a closed cone, and let us suppose

that T (C) ⊂ C, then there exists a non trivial, weakly supercyclic vector for T .

Proof. If σp(T
?) 6= ∅ then, it is well-known that T has a non-trivial hyperinvari-

ant subspace (see [1, Theorem 3.4]). Therefore, a non-trivial, non-cyclic vector

for T , which, in particular, is a non-weakly supercyclic vector. We can suppose

without loss that σp(T
?) = ∅. In that case, let us observe that for every element

x ∈ C \ {0} we have that the set

{rT nx : r ∈ R+, n ∈ N} ⊂ C

and therefore cannot be weakly dense. Therefore, using Corollary 2.5, we have

that x is a non-trivial non weakly supercyclic vector for T .

Remark 2.7: Using the results obtained in [14] and Corollary 2.5 it is possible

to obtain in the Hilbert setting (even for reflexive Banach spaces), non weakly

supercyclic vectors (non-trivial) for power bounded operators whose spectral

radius is equal to 1. This result is related to the famous result obtained by

Brown–Chevreau and Pearcy [5].

3. Concluding remarks.

It would be interesting to extend these results to weaker forms of non-cyclicity.

The following notion was pointed out by P. Enflo.

A bounded linear operator T defined on a separable Banach

space X is cyclic with support N = 2 if there exists a vector
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x ∈ X such that the set

{aT nx + bT mx : a, b ∈ C, m, n ∈ N}

is dense in X .

Firstly, it is not known about the existence of cyclic operators with arbitrary

support N ≥ 2, which are not supercyclic. On the other hand, it will be

interesting to know if for every cyclic vector x with finite support, for instance

N = 2, the subset

{rT nx + sT mx : r, s ∈ R+, m, n ∈ N}

remains dense in X .

Recently, it has been introduced the notion of N -supercyclicity (see [8]). An

operator T is said to be N = 2-supercyclic if there exist two linearly independent

vectors u, v ∈ X such that the set

{aT nu + bT nv : a, b ∈ C, n ∈ N}

is dense in X . This is another generalization of the notion of Supercyclicity (see

[4] for more properties of N -supercyclic operators).

It will be interesting to obtain a “Positive version” of Corollary 2.4 for N -

supercyclic operators.
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